A set-theoretical equivalent of the prime ideal theorem for Boolean algebras
نویسندگان
چکیده
منابع مشابه
Prime Ideal Theorem for Double Boolean Algebras
Double Boolean algebras are algebras (D,u,t, , ,⊥,>) of type (2, 2, 1, 1, 0, 0). They have been introduced to capture the equational theory of the algebra of protoconcepts. A filter (resp. an ideal) of a double Boolean algebra D is an upper set F (resp. down set I) closed under u (resp. t). A filter F is called primary if F 6= ∅ and for all x ∈ D we have x ∈ F or x ∈ F . In this note we prove t...
متن کاملRestricted versions of the Tukey-Teichmüller theorem that are equivalent to the Boolean prime ideal theorem
We formulate a restricted version of the Tukey-Teichmüller Theorem that we denote by (rTT). We then prove that (rTT) and (BPI) are equivalent in ZF and that (rTT) applies rather naturally to several equivalent forms of (BPI): Alexander Subbase Theorem, Stone Representation Theorem, Model Existence and Compactness Theorems for propositional and first-order logic. We also give two variations of (...
متن کاملG-free Colorability and the Boolean Prime Ideal Theorem
We show that the compactness of G-free k-colorability is equivalent to the Boolean prime ideal theorem for any graph G with more than two vertices and any k ≥ 2.
متن کاملA Characterization of the Boolean Prime Ideal Theorem in Terms of Forcing Notions
For certain weak versions of the Axiom of Choice (most notably, the Boolean Prime Ideal theorem), we obtain equivalent formulations in terms of partial orders, and filter-like objects within them intersecting certain dense sets or antichains. This allows us to prove some consequences of the Boolean Prime Ideal theorem using arguments in the style of those that use Zorn’s Lemma, or Martin’s Axiom.
متن کاملThe Dual of a Strongly Prime Ideal
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1975
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-89-2-151-153